Skip to content

[zz] 看看人家Google两老板的论文(2)

2007/07/23
 

5 Results and Performance

  

Query: bill clinton
http://www.whitehouse.gov/  
100.00%  (no date) (0K)  
http://www.whitehouse.gov/  
      Office of the President  
        99.67% (Dec 23 1996) (2K)   
        http://www.whitehouse.gov/WH/EOP/OP/html/OP_Home.html 
      Welcome To The White House  
        99.98%  (Nov 09 1997) (5K) 
        http://www.whitehouse.gov/WH/Welcome.html   
      Send Electronic Mail to the President  
        99.86%  (Jul 14 1997) (5K)   
        http://www.whitehouse.gov/WH/Mail/html/Mail_President.html  
mailto:president@whitehouse.gov  
99.98%   
      mailto:President@whitehouse.gov  
        99.27%   
The "Unofficial" Bill Clinton   
94.06% (Nov 11 1997) (14K)  
http://zpub.com/un/un-bc.html  
       Bill Clinton Meets The Shrinks   
         86.27%  (Jun 29 1997) (63K)   
         http://zpub.com/un/un-bc9.html  
President Bill Clinton – The Dark Side  
97.27%  (Nov 10 1997) (15K)  
http://www.realchange.org/clinton.htm  
$3 Bill Clinton  
94.73%  (no date) (4K) http://www.gatewy.net/~tjohnson/clinton1.html  

Figure 4. Sample Results from Google

The most important measure of a search engine is the quality of its search results. While a complete user evaluation is beyond the scope of this paper, our own experience with Google has shown it to produce better results than the major commercial search engines for most searches. As an example which illustrates the use of PageRank, anchor text, and proximity, Figure 4 shows Google’s results for a search on "bill clinton". These results demonstrates some of Google’s features. The results are clustered by server. This helps considerably when sifting through result sets. A number of results are from the whitehouse.gov domain which is what one may reasonably expect from such a search. Currently, most major commercial search engines do not return any results from whitehouse.gov, much less the right ones. Notice that there is no title for the first result. This is because it was not crawled. Instead, Google relied on anchor text to determine this was a good answer to the query. Similarly, the fifth result is an email address which, of course, is not crawlable. It is also a result of anchor text.

All of the results are reasonably high quality pages and, at last check, none were broken links. This is largely because they all have high PageRank. The PageRanks are the percentages in red along with bar graphs. Finally, there are no results about a Bill other than Clinton or about a Clinton other than Bill. This is because we place heavy importance on the proximity of word occurrences. Of course a true test of the quality of a search engine would involve an extensive user study or results analysis which we do not have room for here. Instead, we invite the reader to try Google for themselves at http://google.stanford.edu.

5.1 Storage Requirements

Aside from search quality, Google is designed to scale cost effectively to the size of the Web as it grows. One aspect of this is to use storage efficiently. Table 1 has a breakdown of some statistics and storage requirements of Google. Due to compression the total size of the repository is about 53 GB, just over one third of the total data it stores. At current disk prices this makes the repository a relatively cheap source of useful data. More importantly, the total of all the data used by the search engine requires a comparable amount of storage, about 55 GB. Furthermore, most queries can be answered using just the short inverted index. With better encoding and compression of the Document Index, a high quality web search engine may fit onto a 7GB drive of a new PC.
  

Storage Statistics

Total Size of Fetched Pages

147.8 GB

Compressed Repository

53.5 GB

Short Inverted Index

4.1 GB

Full Inverted Index

37.2 GB

Lexicon

293 MB

Temporary Anchor Data 
(not in total)

6.6 GB

Document Index Incl. 
Variable Width Data

9.7 GB

Links Database

3.9 GB

Total Without Repository

55.2 GB

Total With Repository

108.7 GB

 

Web Page Statistics

Number of Web Pages Fetched

24 million

Number of Urls Seen

76.5 million

Number of Email Addresses

1.7 million

Number of 404’s

1.6 million

 

Table 1. Statistics

  

 5.2 System Performance

It is important for a search engine to crawl and index efficiently. This way information can be kept up to date and major changes to the system can be tested relatively quickly. For Google, the major operations are Crawling, Indexing, and Sorting. It is difficult to measure how long crawling took overall because disks filled up, name servers crashed, or any number of other problems which stopped the system. In total it took roughly 9 days to download the 26 million pages (including errors). However, once the system was running smoothly, it ran much faster, downloading the last 11 million pages in just 63 hours, averaging just over 4 million pages per day or 48.5 pages per second. We ran the indexer and the crawler simultaneously. The indexer ran just faster than the crawlers. This is largely because we spent just enough time optimizing the indexer so that it would not be a bottleneck. These optimizations included bulk updates to the document index and placement of critical data structures on the local disk. The indexer runs at roughly 54 pages per second. The sorters can be run completely in parallel; using four machines, the whole process of sorting takes about 24 hours.

5.3 Search Performance

Improving the performance of search was not the major focus of our research up to this point. The current version of Google answers most queries in between 1 and 10 seconds. This time is mostly dominated by disk IO over NFS (since disks are spread over a number of machines). Furthermore, Google does not have any optimizations such as query caching, subindices on common terms, and other common optimizations. We intend to speed up Google considerably through distribution and hardware, software, and algorithmic improvements. Our target is to be able to handle several hundred queries per second. Table 2 has some sample query times from the current version of Google. They are repeated to show the speedups resulting from cached IO.

 

Initial Query

Same Query Repeated (IO mostly cached) 

Query

CPU Time(s)

Total Time(s)

CPU Time(s)

Total Time(s)

al gore

0.09

2.13

0.06

0.06

vice president

1.77

3.84

1.66

1.80

hard disks

0.25

4.86

0.20

0.24

search engines

1.31

9.63

1.16

1.16

 

Table 2. Search Times

  

6 Conclusions

Google is designed to be a scalable search engine. The primary goal is to provide high quality search results over a rapidly growing World Wide Web. Google employs a number of techniques to improve search quality including page rank, anchor text, and proximity information. Furthermore, Google is a complete architecture for gathering web pages, indexing them, and performing search queries over them.

6.1 Future Work

A large-scale web search engine is a complex system and much remains to be done. Our immediate goals are to improve search efficiency and to scale to approximately 100 million web pages. Some simple improvements to efficiency include query caching, smart disk allocation, and subindices. Another area which requires much research is updates. We must have smart algorithms to decide what old web pages should be recrawled and what new ones should be crawled. Work toward this goal has been done in [Cho 98]. One promising area of research is using proxy caches to build search databases, since they are demand driven. We are planning to add simple features supported by commercial search engines like boolean operators, negation, and stemming. However, other features are just starting to be explored such as relevance feedback and clustering (Google currently supports a simple hostname based clustering). We also plan to support user context (like the user’s location), and result summarization. We are also working to extend the use of link structure and link text. Simple experiments indicate PageRank can be personalized by increasing the weight of a user’s home page or bookmarks. As for link text, we are experimenting with using text surrounding links in addition to the link text itself. A Web search engine is a very rich environment for research ideas. We have far too many to list here so we do not expect this Future Work section to become much shorter in the near future.

6.2 High Quality Search

The biggest problem facing users of web search engines today is the quality of the results they get back. While the results are often amusing and expand users’ horizons, they are often frustrating and consume precious time. For example, the top result for a search for "Bill Clinton" on one of the most popular commercial search engines was the Bill Clinton Joke of the Day: April 14, 1997. Google is designed to provide higher quality search so as the Web continues to grow rapidly, information can be found easily. In order to accomplish this Google makes heavy use of hypertextual information consisting of link structure and link (anchor) text. Google also uses proximity and font information. While evaluation of a search engine is difficult, we have subjectively found that Google returns higher quality search results than current commercial search engines. The analysis of link structure via PageRank allows Google to evaluate the quality of web pages. The use of link text as a description of what the link points to helps the search engine return relevant (and to some degree high quality) results. Finally, the use of proximity information helps increase relevance a great deal for many queries.

6.3 Scalable Architecture

Aside from the quality of search, Google is designed to scale. It must be efficient in both space and time, and constant factors are very important when dealing with the entire Web. In implementing Google, we have seen bottlenecks in CPU, memory access, memory capacity, disk seeks, disk throughput, disk capacity, and network IO. Google has evolved to overcome a number of these bottlenecks during various operations. Google’s major data structures make efficient use of available storage space. Furthermore, the crawling, indexing, and sorting operations are efficient enough to be able to build an index of a substantial portion of the web — 24 million pages, in less than one week. We expect to be able to build an index of 100 million pages in less than a month.

6.4 A Research Tool

In addition to being a high quality search engine, Google is a research tool. The data Google has collected has already resulted in many other papers submitted to conferences and many more on the way. Recent research such as [Abiteboul 97] has shown a number of limitations to queries about the Web that may be answered without having the Web available locally. This means that Google (or a similar system) is not only a valuable research tool but a necessary one for a wide range of applications. We hope Google will be a resource for searchers and researchers all around the world and will spark the next generation of search engine technology.

7 Acknowledgments

Scott Hassan and Alan Steremberg have been critical to the development of Google. Their talented contributions are irreplaceable, and the authors owe them much gratitude. We would also like to thank Hector Garcia-Molina, Rajeev Motwani, Jeff Ullman, and Terry Winograd and the whole WebBase group for their support and insightful discussions. Finally we would like to recognize the generous support of our equipment donors IBM, Intel, and Sun and our funders. The research described here was conducted as part of the Stanford Integrated Digital Library Project, supported by the National Science Foundation under Cooperative Agreement IRI-9411306. Funding for this cooperative agreement is also provided by DARPA and NASA, and by Interval Research, and the industrial partners of the Stanford Digital Libraries Project.

References

  • [Abiteboul 97] Serge Abiteboul and Victor Vianu, Queries and Computation on the Web. Proceedings of the International Conference on Database Theory. Delphi, Greece 1997.
  • [Bagdikian 97] Ben H. Bagdikian. The Media Monopoly. 5th Edition. Publisher: Beacon, ISBN: 0807061557
  • [Chakrabarti 98] S.Chakrabarti, B.Dom, D.Gibson, J.Kleinberg, P. Raghavan and S. Rajagopalan. Automatic Resource Compilation by Analyzing Hyperlink Structure and Associated Text. Seventh International Web Conference (WWW 98). Brisbane, Australia, April 14-18, 1998.
  • [Cho 98] Junghoo Cho, Hector Garcia-Molina, Lawrence Page. Efficient Crawling Through URL Ordering. Seventh International Web Conference (WWW 98). Brisbane, Australia, April 14-18, 1998.
  • [Gravano 94] Luis Gravano, Hector Garcia-Molina, and A. Tomasic. The Effectiveness of GlOSS for the Text-Database Discovery Problem. Proc. of the 1994 ACM SIGMOD International Conference On Management Of Data, 1994.
  • [Kleinberg 98] Jon Kleinberg, Authoritative Sources in a Hyperlinked Environment, Proc. ACM-SIAM Symposium on Discrete Algorithms, 1998.
  • [Marchiori 97] Massimo Marchiori. The Quest for Correct Information on the Web: Hyper Search Engines. The Sixth International WWW Conference (WWW 97). Santa Clara, USA, April 7-11, 1997.
  • [McBryan 94] Oliver A. McBryan. GENVL and WWWW: Tools for Taming the Web. First International Conference on the World Wide Web. CERN, Geneva (Switzerland), May 25-26-27 1994. http://www.cs.colorado.edu/home/mcbryan/mypapers/www94.ps
  • [Page 98] Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd. The PageRank Citation Ranking: Bringing Order to the Web. Manuscript in progress. http://google.stanford.edu/~backrub/pageranksub.ps
  • [Pinkerton 94] Brian Pinkerton, Finding What People Want: Experiences with the WebCrawler. The Second International WWW Conference Chicago, USA, October 17-20, 1994. http://info.webcrawler.com/bp/WWW94.html
  • [Spertus 97] Ellen Spertus. ParaSite: Mining Structural Information on the Web. The Sixth International WWW Conference (WWW 97). Santa Clara, USA, April 7-11, 1997.
  • [TREC 96] Proceedings of the fifth Text REtrieval Conference (TREC-5). Gaithersburg, Maryland, November 20-22, 1996. Publisher: Department of Commerce, National Institute of Standards and Technology. Editors: D. K. Harman and E. M. Voorhees. Full text at: http://trec.nist.gov/
  • [Witten 94] Ian H Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images. New York: Van Nostrand Reinhold, 1994.
  • [Weiss 96] Ron Weiss, Bienvenido Velez, Mark A. Sheldon, Chanathip Manprempre, Peter Szilagyi, Andrzej Duda, and David K. Gifford. HyPursuit: A Hierarchical Network Search Engine that Exploits Content-Link Hypertext Clustering. Proceedings of the 7th ACM Conference on Hypertext. New York, 1996.

Vitae


Sergey Brin received his B.S. degree in mathematics and computer science from the University of Maryland at College Park in 1993. Currently, he is a Ph.D. candidate in computer science at Stanford University where he received his M.S. in 1995. He is a recipient of a National Science Foundation Graduate Fellowship. His research interests include search engines, information extraction from unstructured sources, and data mining of large text collections and scientific data.

Lawrence Page was born in East Lansing, Michigan, and received a B.S.E. in Computer Engineering at the University of Michigan Ann Arbor in 1995. He is currently a Ph.D. candidate in Computer Science at Stanford University. Some of his research interests include the link structure of the web, human computer interaction, search engines, scalability of information access interfaces, and personal data mining.

8 Appendix A: Advertising and Mixed Motives

Currently, the predominant business model for commercial search engines is advertising. The goals of the advertising business model do not always correspond to providing quality search to users. For example, in our prototype search engine one of the top results for cellular phone is "The Effect of Cellular Phone Use Upon Driver Attention", a study which explains in great detail the distractions and risk associated with conversing on a cell phone while driving. This search result came up first because of its high importance as judged by the PageRank algorithm, an approximation of citation importance on the web [Page, 98]. It is clear that a search engine which was taking money for showing cellular phone ads would have difficulty justifying the page that our system returned to its paying advertisers. For this type of reason and historical experience with other media [Bagdikian 83], we expect that advertising funded search engines will be inherently biased towards the advertisers and away from the needs of the consumers.

Since it is very difficult even for experts to evaluate search engines, search engine bias is particularly insidious. A good example was OpenText, which was reported to be selling companies the right to be listed at the top of the search results for particular queries [Marchiori 97]. This type of bias is much more insidious than advertising, because it is not clear who "deserves" to be there, and who is willing to pay money to be listed. This business model resulted in an uproar, and OpenText has ceased to be a viable search engine. But less blatant bias are likely to be tolerated by the market. For example, a search engine could add a small factor to search results from "friendly" companies, and subtract a factor from results from competitors. This type of bias is very difficult to detect but could still have a significant effect on the market. Furthermore, advertising income often provides an incentive to provide poor quality search results. For example, we noticed a major search engine would not return a large airline’s homepage when the airline’s name was given as a query. It so happened that the airline had placed an expensive ad, linked to the query that was its name. A better search engine would not have required this ad, and possibly resulted in the loss of the revenue from the airline to the search engine. In general, it could be argued from the consumer point of view that the better the search engine is, the fewer advertisements will be needed for the consumer to find what they want. This of course erodes the advertising supported business model of the existing search engines. However, there will always be money from advertisers who want a customer to switch products, or have something that is genuinely new. But we believe the issue of advertising causes enough mixed incentives that it is crucial to have a competitive search engine that is transparent and in the academic realm.

9 Appendix B: Scalability

9. 1 Scalability of Google

We have designed Google to be scalable in the near term to a goal of 100 million web pages. We have just received disk and machines to handle roughly that amount. All of the time consuming parts of the system are parallelize and roughly linear time. These include things like the crawlers, indexers, and sorters. We also think that most of the data structures will deal gracefully with the expansion. However, at 100 million web pages we will be very close up against all sorts of operating system limits in the common operating systems (currently we run on both Solaris and Linux). These include things like addressable memory, number of open file descriptors, network sockets and bandwidth, and many others. We believe expanding to a lot more than 100 million pages would greatly increase the complexity of our system.

9.2 Scalability of Centralized Indexing Architectures

As the capabilities of computers increase, it becomes possible to index a very large amount of text for a reasonable cost. Of course, other more bandwidth intensive media such as video is likely to become more pervasive. But, because the cost of production of text is low compared to media like video, text is likely to remain very pervasive. Also, it is likely that soon we will have speech recognition that does a reasonable job converting speech into text, expanding the amount of text available. All of this provides amazing possibilities for centralized indexing. Here is an illustrative example. We assume we want to index everything everyone in the US has written for a year. We assume that there are 250 million people in the US and they write an average of 10k per day. That works out to be about 850 terabytes. Also assume that indexing a terabyte can be done now for a reasonable cost. We also assume that the indexing methods used over the text are linear, or nearly linear in their complexity. Given all these assumptions we can compute how long it would take before we could index our 850 terabytes for a reasonable cost assuming certain growth factors. Moore’s Law was defined in 1965 as a doubling every 18 months in processor power. It has held remarkably true, not just for processors, but for other important system parameters such as disk as well. If we assume that Moore’s law holds for the future, we need only 10 more doublings, or 15 years to reach our goal of indexing everything everyone in the US has written for a year for a price that a small company could afford. Of course, hardware experts are somewhat concerned Moore’s Law may not continue to hold for the next 15 years, but there are certainly a lot of interesting centralized applications even if we only get part of the way to our hypothetical example.

Of course a distributed systems like Gloss [Gravano 94] or Harvest will often be the most efficient and elegant technical solution for indexing, but it seems difficult to convince the world to use these systems because of the high administration costs of setting up large numbers of installations. Of course, it is quite likely that reducing the administration cost drastically is possible. If that happens, and everyone starts running a distributed indexing system, searching would certainly improve drastically.

Because humans can only type or speak a finite amount, and as computers continue improving, text indexing will scale even better than it does now. Of course there could be an infinite amount of machine generated content, but just indexing huge amounts of human generated content seems tremendously useful. So we are optimistic that our centralized web search engine architecture will improve in its ability to cover the pertinent text information over time and that there is a bright future for search.  

Advertisements
No comments yet

发表评论

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s

%d 博主赞过: